The Significance of Methylation in HPV16 Genome to Cervix Cancerogenesis


Authors: P. Hublarová;  R. Hrstka;  B. Vojtěšek
Authors‘ workplace: Oddělení onkologické a experimentální patologie, Masarykův onkologický ústav, Brno
Published in: Ceska Gynekol 2008; 73(2): 87-92

Overview

Objective:
To summarize the significance of methylation in HPV16 genome to cervix cancerogenesis.

Design:
Review.

Setting:
Department of Oncological and Experimental Pathology, Masaryk Memorial Cancer Institute, Brno.

Subject and Method:
Human papillomaviruses, especially HPV16, are the most frequent causative agents of cervical intraepithelial neoplasia and cervical carcinoma. Their ability to initiate transformation of infected epithelial cells fully depends up production of viral early phase proteins E6 and E7. Affected keratinocytes activate defensive mechanisms based on inhibition of viral DNA transcription by changes in chromatin structure like DNA methylation or histon deacetylation and therefore prevent transcriptional factors from binding to target promoters and from the production of viral oncoproteins.

Conclusion:
Research into epigenetic mechanisms of gene silencing clearly showed their important roles in etiology of cancer. Recent findings confirm the significance of methylation of HPV16 oncogenes leading to block of neoplastic transformation, and simultaneously they indicate new therapeutic possibilities linked with reactivation of methylated tumor supressors.

Key words:
cervix carcinoma, HPV16, oncoproteins E6 and E7, methylation


Sources

1. Badal, S., Badal, V., Calleja-Macias, IE., et al. The human papillomavirus-18 genome is efficiently targeted by cellular DNA methylation. Virology, 2004, 324, 2. p. 483-492.

2. Badal, V., Chuang, LS., Tan, EH., et al. CpG methylation of human papillomavirus type 16 DNA in cervical cancer cell lines and in clinical specimens: genomic hypomethylation correlates with carcinogenic progression. J Virol, 2003, 77, 11, p. 6227-6234.

3. Baker, CC., Phelps, WC., Lindgren, V., et al. Structural and transcriptional analysis of human papillomavirus type 16 sequences in cervical carcinoma cell lines. J Virol, 1987, 61, 4, p. 962-971.

4. Boyer, SN., Wazer, DE., Band, V. E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res, 1996. 56, 20, p. 4620-4.

5. Brenner, C., Deplus, R., Didelot, C., et al. Myc represses transcription through recruitment of DNA methyltransferase corepressor. Embo J, 2005, 24, 2, p. 336-346.

6. Bringold, F., Serrano, M. Tumor suppressors and oncogenes in cellular senescence. Exp Gerontol, 2000. 35, 3, p. 317-329.

7. Burgers, WA., Blanchon, L., Pradhan, S., et al. Viral oncoproteins target the DNA methyltransferases. Oncogene, 2007. 26, 11, p. 1650-1655.

8. Cabrnochová, http://www.vakciny.net/doporucene_ockovani/ HPV.html#1, Brno, leden 2007 On-line 17. 12. 2007.

9. Camus, S., Menendez, S., Cheok, CF., et al. Ubiquitin-independent degradation of p53 mediated by high-risk human papillomavirus protein E6. Oncogene, 2007, 26, 28, p. 4059-4070.

10. Cobrinik, D., Dowdy, SF., Hinds, PW., et al. The retinoblastoma protein and the regulation of cell cycling. Trends Biochem Sci, 1992, 17, 8, p. 312-315.

11. D’Alessio, AC., Szyf, M. Epigenetic tete-a-tete: the bilateral relationship between chromatin modifications and DNA methylation. Biochem Cell Biol, 2006, 84, 4, p. 463-476.

12. Damin, AP., Karam, R., Zettler, CG., et al. Evidence for an association of human papillomavirus and breast carcinomas. Breast Cancer Res Treat, 2004, 84, 2, p. 131-137.

13. Daniel, B., Mukherjee, G., Seshadri, L., et al. Changes in the physical state and expression of human papillomavirus type 16 in the progression of cervical intraepithelial neoplasia lesions analysed by PCR. J Gen Virol, 1995, 76, Pt 10, p. 2589-2593.

14. de la Cruz-Hernandez, E., Perez-Cardenas, E., Contreras-Paredes, A., et al. The effects of DNA methylation and histone deacetylase inhibitors on human papillomavirus early gene expression in cervical cancer, an in vitro and clinical study. Virol J, 2007, 4, p. 18.

15. Demeret, C., Desaintes, C., Yaniv, M., et al. Different mechanisms contribute to the E2-mediated transcriptional repression of human papillomavirus type 18 viral oncogenes. J Virol, 1997, 71, 12, p. 9343-9349.

16. Doorbar, J. The papillomavirus life cycle. J Clin Virol, 2005, 32, Suppl 1, p. S7-S15.

17. Doorbar, J. Molecular biology of human papillomavirus infection and cervical cancer. Clin Sci (Lond), 2006, 110, 5, p. 525-541.

18. Elenbaas, B., Spirio, L., Koerner, F., et al. Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev, 2001, 15, 1, p. 50-65.

19. Fehrmann, F., Laimins, LA. Human papillomaviruses: targeting differentiating epithelial cells for malignant transformation. Oncogene, 2003. 22, 33, p. 5201-5207.

20. Feng, Q., Balasubramanian, A., Hawes, SE., et al. Detection of hypermethylated genes in women with and without cervical neoplasia. J Natl Cancer Inst, 2005, 97, 4, p. 273-282.

21. Franco, EL., Villa, LL., Sobrinho, JP., et al. Epidemiology of acquisition and clearance of cervical human papillomavirus infection in women from a high-risk area for cervical cancer. J Infect Dis, 1999, 180, 5, p. 1415-1423.

22. Fuks, F. DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev, 2005, 15, 5, p. 490-495.

23. Fuks, F., Burgers, WA., Brehm, A., et al. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat Genet, 2000, 24, 1, p. 88-91.

24. Funk, JO., Waga, S., Harry, JB., et al. Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. Genes Dev, 1997, 11, 16, p. 2090-2100.

25. Giarre, M., Caldeira, S., Malanchi, I., et al. Induction of pRb degradation by the human papillomavirus type 16 E7 protein is essential to efficiently overcome p16INK4a-imposed G1 cell cycle Arrest. J Virol, 2001, 75, 10, p. 4705-4712.

26. Gloss, B., Bernard, HU., Seedorf, K., et al. The upstream regulatory region of the human papilloma virus-16 contains an E2 protein-independent enhancer which is specific for cervical carcinoma cells and regulated by glucocorticoid hormones. Embo J, 1987, 6, 12, p. 3735-3743.

27. Gloss, B., Chong, T., Bernard, HU. Numerous nuclear proteins bind the long control region of human papillomavirus type 16: a subset of 6 of 23 DNase I-protected segments coincides with the location of the cell-type-specific enhancer. J Virol, 1989, 63, 3, p. 1142-1152.

28. Guo, M., Hu, L., Baliga, M., et al. The predictive value of p16(INK4a) and hybrid capture 2 human papillomavirus testing for high-grade cervical intraepithelial neoplasia. Am J Clin Pathol, 2004, 122, 6, p. 894-901.

29. Hahn, WC., Counter, CM., Lundberg, AS., et al. Creation of human tumour cells with defined genetic elements. Nature, 1999, 400, 6743, p. 464-468.

30. Helt, AM., Funk, JO., Galloway, DA. Inactivation of both the retinoblastoma tumor suppressor and p21 by the human papillomavirus type 16 E7 oncoprotein is necessary to inhibit cell cycle arrest in human epithelial cells. J Virol, 2002, 76, 20, p. 10559-10568.

31. Herman, JG., Baylin, SB. Promoter-region hypermethylation and gene silencing in human cancer. Curr Top Microbiol Immunol, 2000, 249, p. 35-54.

32. Hildesheim, A., Schiffman, MH., Gravitt, PE., et al. Persistence of type-specific human papillomavirus infection among cytologically normal women. J Infect Dis, 1994, 169, 2, p. 235-240.

33. Ho, GY., Burk, RD., Klein, S., et al. Persistent genital human papillomavirus infection as a risk factor for persistent cervical dysplasia. J Natl Cancer Inst, 1995, 87, 18, p. 1365-1371.

34. Huibregtse, JM., Scheffner, M., Howley, PM. A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. Embo J, 1991, 10, 13, p. 4129-4135.

35. Chan, WK., Klock, G., Bernard, HU. Progesterone and glucocorticoid response elements occur in the long control regions of several human papillomaviruses involved in anogenital neoplasia. J Virol, 1989. 63, 8, p. 3261-3269.

36. Jones, DL., Alani, RM., Munger, K. The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip1-mediated inhibition of cdk2. Genes Dev, 1997, 11, 16, p. 2101-2111.

37. Jones, PL., Wade, PA., Wolffe, AP. Purification of the MeCP2/Histone Deacetylase Complex from Xenopus laevis. Methods Mol Biol, 2001, 181, p. 297-307.

38. Kalantari, M., Calleja-Macias, IE., Tewari, D., et al. Conserved methylation patterns of human papillomavirus type 16 DNA in asymptomatic infection and cervical neoplasia. J Virol, 2004, 78, 23, p. 12762-12772.

39. Khleif, SN., DeGregori, J., Yee, CL., et al. Inhibition of cyclin D-CDK4/CDK6 activity is associated with an E2F-mediated induction of cyclin kinase inhibitor activity. Proc Natl Acad Sci U S A, 1996, 93, 9, p. 4350-4351.

40. Kim, K., Garner-Hamrick, PA., Fisher, C., et al. Methylation patterns of papillomavirus DNA, its influence on E2 function, and implications in viral infection. J Virol, 2003, 77, 23, p. 12450-12459.

41. Kim, YT., Zhao, M. Aberrant cell cycle regulation in cervical carcinoma. Yonsei Med J, 2005, 46, 5, p. 597-613.

42. Klingelhutz, AJ., Foster, SA., McDougall, JK. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature, 1996, 380, 6569, p. 79-82.

43. Li, Y., Nichols, MA., Shay, JW., et al. Transcriptional repression of the D-type cyclin-dependent kinase inhibitor p16 by the retinoblastoma susceptibility gene product pRb. Cancer Res, 1994, 54, 23, p. 6078-6082.

44. May, M., Dong, XP., Beyer-Finkler, E., et al. The E6/E7 promoter of extrachromosomal HPV16 DNA in cervical cancers escapes from cellular repression by mutation of target sequences for YY1. Embo J, 1994, 13, 6, p. 1460-1466.

45. Munger, K., Baldwin, A., Edwards, KM., et al. Mechanisms of human papillomavirus-induced oncogenesis. J Virol, 2004, 78, 21, p. 11451-11460.

46. Munger, K., Basile, JR., Duensing, S., et al. Biological activities and molecular targets of the human papillomavirus E7 oncoprotein. Oncogene, 2001. 20, 54, p. 7888-7898.

47. Munger, K., Howley, PM. Human papillomavirus immortalization and transformation functions. Virus Res, 2002, 89, 2, p. 213-228.

48. Munoz, N., Castellsague, X., de Gonzalez, AB., et al. Chapter 1: HPV in the etiology of human cancer. Vaccine, 2006, 24S3, p. S1-S10.

49. Murphy, N., Heffron, CC., King, B., et al. p16INK4A positivity in benign, premalignant and malignant cervical glandular lesions: a potential diagnostic problem. Virchows Arch, 2004, 445, 6, p. 610-615.

50. Murphy, N., Ring, M., Killalea, AG., et al. p16INK4A as a marker for cervical dyskaryosis: CIN and cGIN in cervical biopsies and ThinPrep smears. J Clin Pathol, 2003, 56, 1, p. 56-63.

51. Nan, X., Cross, S., Bird, A. Gene silencing by methyl-CpG-binding proteins. Novartis Found Symp, 1998, 214, p. 6-16; discussion 16-21, 46-50.

52. Okano, M., Bell, DW., Haber, DA., et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 1999, 99, 3, p. 247-257.

53. Pan, LN., Lu, J., Huang, BQ. HDAC Inhibitors: A potential new category of anti-tumor agents. Cell Mol Immunol, 2007. 4, 5, p. 337-43.

54. Parry, D., Bates, S., Mann, DJ., et al. Lack of cyclin D-Cdk complexes in Rb-negative cells correlates with high levels of p16INK4/MTS1 tumour suppressor gene product. Embo J, 1995, 14, 3, p. 503-511.

55. Perez, LO., Abba, MC., Laguens, RM., et al. Analysis of adenocarcinoma of the colon and rectum: detection of human papillomavirus (HPV) DNA by polymerase chain reaction. Colorectal Dis, 2005, 7, 5, p. 492-495.

56. Pruss, D., Hayes, JJ., Wolffe, AP. Nucleosomal anatomy—where are the histones? Bioessays, 1995, 17, 2, p. 161-170.

57. Razin, A., Szyf, M. DNA methylation patterns. Formation and function. Biochim Biophys Acta, 1984, 782, 4, p. 331-342.

58. Reinstein, E., Scheffner, M., Oren, M., et al. Degradation of the E7 human papillomavirus oncoprotein by the ubiquitin-proteasome system: targeting via ubiquitination of the N-terminal residue. Oncogene, 2000, 19, 51, p. 5944-5950.

59. Rosl, F., Arab, A., Klevenz, B., et al. The effect of DNA methylation on gene regulation of human papillomaviruses. J Gen Virol, 1993, 74, Pt 5, p. 791-801.

60. Serrano, M., Hannon, GJ., Beach, D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature, 1993, 366, 6456, p. 704-707.

61. Scheffner, M., Werness, BA., Huibregtse, JM., et al. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell, 1990, 63, 6, p. 1129-1136.

62. Schiffman, M., Castle, PE., Human papillomavirus: epidemiology and public health. Arch Pathol Lab Med, 2003, 127, 8, p. 930-934.

63. Schwarz, E., Freese, UK., Gissmann, L., et al. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature, 1985. 314, 6006, p. 111-114.

64. Stacey, SN., Jordan, D., Williamson, AJ., et al. Leaky scanning is the predominant mechanism for translation of human papillomavirus type 16 E7 oncoprotein from E6/E7 bicistronic mRNA. J Virol, 2000, 74, 16, p. 7284-7297.

65. Stoler, MH., Rhodes, CR., Whitbeck, A., et al. Human papillomavirus type 16 and 18 gene expression in cervical neoplasias. Hum Pathol, 1992, 23, 2, p. 117-128.

66. Strahl, BD., Allis, CD. The language of covalent histone modifications. Nature, 2000, 403, 6765, p. 41-45.

67. Stubenrauch, F., Laimins, LA. Human papillomavirus life cycle: active and latent phases. Semin Cancer Biol, 1999, 9, 6, p. 379-386.

68. Stunkel, W., Huang, Z., Tan, SH., et al. Nuclear matrix attachment regions of human papillomavirus type 16 repress or activate the E6 promoter, depending on the physical state of the viral DNA. J Virol, 2000, 74, 6, p. 2489-2501.

69. Tan, SH., Leong, LE., Walker, PA., et al. The human papillomavirus type 16 E2 transcription factor binds with low cooperativity to two flanking sites and represses the E6 promoter through displacement of Sp1 and TFIID. J Virol, 1994, 68, 10, p. 6411-6420.

70. Thomas, M., Pim, D., Banks, L. The role of the E6-p53 interaction in the molecular pathogenesis of HPV. Oncogene, 1999, 18, 53, p. 7690-7700.

71. Van Tine, BA., Knops, J., Broker, TR., et al. In situ analysis of the transcriptional activity of integrated viral DNA using tyramide-FISH. Dev Biol (Basel), 2001, 106, p. 381-385.

72. Vire, E., Brenner, C., Deplus, R., et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature, 2006, 439, 7078, p. 871-874.

73. Volgareva, G., Zavalishina, L., Andreeva, Y., et al. Protein p16 as a marker of dysplastic and neoplastic alterations in cervical epithelial cells. BMC Cancer, 2004, 4, p. 58.

74. von Knebel Doeberitz, M. New molecular tools for efficient screening of cervical cancer. Dis Markers, 2001, 17, 3, p. 123-128.

75. Walboomers, JM., Jacobs, MV., Manos, MM., et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol, 1999, 189, 1, p. 12-19.

76. Werness, BA., Levine, AJ., Howley, PM. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science, 1990. 248, 4951, p. 76-79.

77. Zerfass-Thome, K., Zwerschke, W., Mannhardt, B., et al. Inactivation of the cdk inhibitor p27KIP1 by the human papillomavirus type 16 E7 oncoprotein. Oncogene, 1996, 13, 11, p. 2323-2330.

78. Zhang, J., Martins, CR., Fansler, ZB., et al. DNA methylation in anal intraepithelial lesions and anal squamous cell carcinoma. Clin Cancer Res, 2005, 11, 18, p. 6544-6549.

79. Zhang, Y., Reinberg, D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev, 2001, 15, 18, p. 2343-2360.

80. Zheng, ZM., Baker, CC. Papillomavirus genome structure, expression, and post-transcriptional regulation. Front Biosci, 2006, 11, p. 2286-2302.

Labels
Paediatric gynaecology Gynaecology and obstetrics Reproduction medicine

Article was published in

Czech Gynaecology

Issue 2

2008 Issue 2

Most read in this issue
Login
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account