Conservative possibilities influencing PCOS syndrome – the importance of nutrition

Authors: Líška Dávid 1;  Záhumensky Jozef 2
Authors‘ workplace: Katedra telesnej výchovy a športu, FF Univerzity Mateja Bela, Banská Bystrica, Slovenská republika 1;  II. gynekologicko-pôrodnícka klinika LF UK a UN Bratislava, Slovenská republika 2
Published in: Ceska Gynekol 2021; 86(5): 343-348
Category: Review Article
doi: 10.48095/cccg2021343


Polycystic ovary syndrome (PCOS) is a common pathological condition in women. Conservative treatment is used in the treatment of polycystic ovary syndrome. Conservative treatment options include increased physical activity and diet. The main aim of the article is to discuss the therapeutic treatment of influencing PCOS from a nutritional point of view. PCOS is associated with several comorbidities, including infertility, metabolic syndrome, obesity, impaired glucose tolerance, diabetes mellitus II, and increased cardiovascular risk. Several therapeutic diets can be used in the treatment of PCOS, such as the DASH diet, the low-carbohydrate diet, and a diet based on a low glycemic index. A change in eating habits is associated with improvement in PCOS symptoms.


Diet – Polycystic ovary syndrome – metabolic syndrome – nutrition


1. Ventruba P, Žák J, Řežábek K et al. Řešená problematika reprodukční medicíny v České republice 2020. Ceska Gynekol 2021; 86 (2): 140–147. doi: 10.48095/cccg2021140.

2. Rasquin Leon LI, Anastasopoulou C, Mayrin JV. Polycystic ovarian disease. In: StatPearls Publishing LLC. 2021 [online]. Available from: http: // 459251/.

3. Zhang B, Zhou W, Shi Y et al. Lifestyle and environmental contributions to ovulatory dysfunction in women of polycystic ovary syndrome. BMC Endocr Disord 2020; 20 (1): 19. doi: 10.1186/s12902-020-0497-6.

4. Kulkarni SD, Patil AN, Gudi A et al. Changes in diet composition with urbanization and its effect on the polycystic ovarian syndrome phenotype in a Western Indian population. Fertil Steril 2019; 112 (4): 758–763. doi: 10.1016/j.fertnstert.2019.05.021.

5. Bethea SW, Nestler JE. Comorbidities in polycystic ovary syndrome: their relationship to insulin resistance. Panminerva Med 2008; 50 (4): 295–304.

6. Xia XY, Yu YJ, Ye F et al. MicroRNA-506-3p inhibits proliferation and promotes apoptosis in ovarian cancer cell via targeting sirt1/akt/foxo3a signaling pathway. Neoplasma 2020; 67 (2): 344–353. doi: 10.4149/neo_2020_190517N441.

7. Ali AT. Can we prevent ovarian cancer? Ceska Gynekol 2020; 85 (1): 49–58.

8. Tománková K, Přidalová M, Gába A. The impact of obesity on foot morphology in women aged 48 years or older. Acta Gymnica 2015; 45 (2): 69–75. doi: 10.5507/ag.2015.010.

9. Matoulek M, Cibulková N, Kádě O et al. Physical activity in the treatment of obesity in practice. Vnitr Lek 2020; 66 (8): 483–488.

10. Svačina Š. Obesity and cardiovascular disease. Vnitr Lek 2020; 66 (2): 89–91.

11. Sigmund E, Baďura P, Sigmundová D et al. Overweight and obesity in children in re-lation to physical activity and excessive body weight in their parents. Prakt Lék 2020; 100 (2): 83–87.

12. Metwally M, Li TC, Ledger WL. The impact of obesity on female reproductive function. Obes Rev 2007; 8 (6): 515–523. doi: 10.1111/j.1467-789X.2007.00406.x.

13. Rasool SU, Ashraf S, Nabi M et al. Elevated fasting insulin is associated with cardiovascular and metabolic risk in women with polycystic ovary syndrome. Diabetes Metab Syndr 2019; 13 (3): 2098–2105. doi: 10.1016/j.dsx.2019.05.003.

14. Líška D, Záhumenský J. Conservative treatment options for polycystic ovary syndrome: the importance of exercise. Ceska Gynekol 2020; 85 (6): 430–435.

15. Arentz S, Smith CA, Abbott J et al. Perceptions and experiences of lifestyle interventions in women with polycystic ovary syndrome (PCOS), as a management strategy for symptoms of PCOS. BMC Womens Health 2021; 21: 107. doi: 10.1186/s12905-021-01252-1.

16. Del Pup L, Cagnacci A. IMPROVE lifestyle in polycystic ovary syndrome: a systematic strategy. Gynecol Endocrinol 2021; 1: 1–4. doi: 10.1080/09513590.2021.1871892.

17. Patten RK, Boyle RA, Moholdt T et al. Exercise interventions in polycystic ovary syndrome: a systematic review and meta-analysis. Front Physiol 2020; 11: 606. doi: 10.3389/ fphys.2020.00606.

18. Canbolat M, Kafkas AS, Erbay MF et al. Exercise is good also for a healthy hippocampus. Bratisl Lek Listy 2019; 120 (11): 739–743. doi: 10.4149/BLL_2019_123.

19. Guan Y, Wang D, Bu H et al. The effect of metformin on polycystic ovary syndrome in overweight women: a systematic review and meta-analysis of randomized controlled trials. Int J Endocrinol 2020; 2020: 5150684. doi: 10.1155/2020/5150684.

20. Hiam D, Patten R, Gibson-Helm M et al. The effectiveness of high intensity intermittent training on metabolic, reproductive and mental health in women with polycystic ovary syndrome: study protocol for the iHIT – randomised controlled trial. Trials 2019; 20 (1): 221. doi: 10.1186/s13063-019-3313-8.

21. Hoover SE, Gower BA, Cedillo YE et al. Changes in ghrelin and glucagon following a low glycemic load eiet in women with PCOS. J Clin Endocrinol Metab 2021; 106 (5): e2151–e2161. doi: 10.1210/clinem/dgab028.

22. Lim SS, Hutchison SK, Van Ryswyk E et al. Lifestyle changes in women with polycystic ovary syndrome. Cochrane Database Syst Rev 2019; 3 (3): CD007506. doi: 10.1002/14651858.CD007506.pub4.

23. Shang Y, Zhou H, Hu M et al. Effect of diet on insulin resistance in polycystic ovary syndrome. J Clin Endocrinol Metab 2020; 105 (10): dgaa425. doi: 10.1210/clinem/dgaa425.

24. Abdolahian S, Tehrani FR, Amiri M et al. Effect of lifestyle modifications on anthropometric, clinical, and bio­chemical parameters in adolescent girls with polycystic ovary syndrome: a systematic review and meta-analysis. BMC Endocr Disord 2020; 20 (1): 71. doi: 10.1186/s12902-020-00552-1.

25. de Melo GB, Soares JF, Costa TC et al. Early exposure to high-sucrose diet leads to deteriorated ovarian health. Front Endocrinol (Lausanne) 2021; 12: 656831. doi: 10.3389/fendo.2021.656831.

26. Niño OM, da Costa CS, Torres KM et al. High-refined carbohydrate diet leads to polycystic ovary syndrome-like features and reduced ovarian reserve in female rats. Toxicol Lett 2020; 332: 42–55. doi: 10.1016/j.toxlet.2020.07.002.

27. Shi B, Feng D, Sagnelli M et al. Fructose levels are elevated in women with polycystic ovary syndrome with obesity and hyperinsulinemia. Hum Reprod 2020; 35 (1): 187–194. doi: 10.1093/humrep/dez239.

28. Swora-Cwynar E, Kujawska-Łuczak M, Suliburska J et al. The effects of a low-calorie diet or an isocaloric diet combined with metformin on sex hormones in obese women of child-bearing age. Acta Sci Pol Technol Aliment 2016; 15 (2): 213–220. doi: 10.17306/J.AFS.2016.2.21.

29. Teede HJ, Misso ML, Costello MF et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum Reprod 2018; 33 (9): 1602–1618. doi: 10.1093/humrep/dey256.

30. Azadbakht L, Fard NR, Karimi M et al. Effects of the Dietary Approaches to Stop Hypertension (DASH) eating plan on cardiovascular risks among type 2 diabetic patients: a randomized crossover clinical trial. Diabetes Care 2011; 34 (1): 55–57. doi: 10.2337/dc10-0676.

31. Shirani F, Salehi-Abargouei A, Azadbakht L. Effects of Dietary Approaches to Stop Hypertension (DASH) diet on some risk for developing type 2 diabetes: a systematic review and meta-analysis on controlled clinical trials. Nutrition 2013; 29 (7–8): 939–947. doi: 10.1016/j.nut.2012.12.021.

32. Azadi-Yazdi M, Karimi-Zarchi M, Salehi-Abargouei A et al. Effects of Dietary Approach to Stop Hypertension diet on androgens, antioxidant status and body composition in overweight and obese women with polycystic ovary syndrome: a randomised controlled trial. J Hum Nutr Diet 2017; 30 (3): 275–283. doi: 10.1111/jhn.12433.

33. Foroozanfard F, Rafiei H, Samimi M et al. The effects of dietary approaches to stop hypertension diet on weight loss, anti-Müllerian hormone and metabolic profiles in women with polycystic ovary syndrome: a randomized clinical trial. Clin Endocrinol (Oxf) 2017; 87 (1): 51–58. doi: 10.1111/cen.13333.

34. Zafar MI, Mills KE, Zheng J et al. Low-glycemic index diets as an intervention for diabetes: a systematic review and meta-analysis. Am J Clin Nutr 2019; 110 (4): 891–902. doi: 10.1093/ajcn/nqz149.

35. Kazemi M, Hadi A, Pierson RA et al. Effects of dietary glycemicindex and glycemic load on cardiometabolic and reproductive profiles in women with polycystic ovary syndrome: a systematic review and meta-analysis of randomized controlled trials. Adv Nutr 2021; 12 (1): 161–178. doi: 10.1093/advances/nmaa092.

36. Goss AM, Chandler-Laney PC, Ovalle F et al. Effects of a eucaloric reduced-carbohydrate diet on body composition and fat distribution in women with PCOS. Metabolism 2014; 63 (10): 1257–1264. doi: 10.1016/j.metabol.2014.07.007.

37. Zhang L, Fu T, Yin R et al. Prevalence of depression and anxiety in systemic lupus erythematosus: a systematic review and meta-analysis. BMC Psychiatry 2017; 17 (1): 70. doi: 10.1186/s12888-017-1234-1.

38. Ułamek-Kozioł M, Czuczwar SJ, Januszew­ski S et al. Ketogenic diet and epilepsy. Nutrients 2019; 11 (10): 2510. doi: 10.3390/nu11102510.

39. Li J, Bai WP, Jiang B et al. Ketogenic diet in women with polycystic ovary syndrome and liver dysfunction who are obese: a randomized, open-label, parallel-group, controlled pilot trial. J Obstet Gynaecol Res 2021; 47 (3): 1145–1152. doi: 10.1111/jog.14650.

40. Mavropoulos JC, Yancy WS, Hepburn J et al.The effects of a low-carbohydrate, ketogenic diet on the polycystic ovary syndrome: a pilot study. Nutr Metab (Lond) 2005; 2: 35. doi: 10.1186/1743-7075-2-35.

41. McBreairty LE, Kazemi M, Chilibeck PD et al. Effect of a pulse-based diet and aerobic exercise on bone measures and body composition in women with polycystic ovary syndrome: a randomized controlled trial. Bone Rep 2020; 12: 100248. doi: 10.1016/j.bonr.2020.100248.

42. Mukai T, Kishi T, Matsuda Y et al. A meta-analysis of inositol for depression and anxiety disorders. Human Psychopharmacology 2014; 29 (1): 55–63.

43. Unfer V, Facchinetti F, Orrù B et al. Myo-inositol effects in women with PCOS: a meta-analysis of randomized controlled trials. Endocr Connect 2017; 6 (8): 647–658. doi: 10.1530/EC-17-0243.

44. Wang Y, Zidichouski JA. Update on the benefits and mechanisms of action of the bio­active vegetal alkaloid berberine on lipid metabolism and homeostasis. Cholesterol 2018; 2018: 7173920. doi: 10.1155/2018/7173920.

45. Li MF, Zhou XM, Li XL. The effect of berberine on polycystic ovary syndrome patients with insulin resistance (PCOS-IR): a meta-analysis and systematic review. Evid Based Complement Alternat Med 2018; 2018: 2532935. doi: 10.1155/2018/2532935.

46. Chokchaiwong S, Kuo YT, Lin SH et al. Coenzyme Q10 serves to couple mitochondrial oxidative phosphorylation and fatty acid b-oxidation, and attenuates NLRP3 inflammasome activation. Free Radic Res 2018; 52 (11–12): 1445–1455. doi: 10.1080/10715762.2018.1500695.

47. Taghizadeh S, Izadi A, Shirazi S et al. The effect of coenzyme Q10 supplementation on inflammatory and endothelial dysfunction markers in overweight/obese polycystic ovary syndrome patients. Gynecol Endocrinol 2021; 37 (1): 26–30. doi: 10.1080/09513590.2020.1779689.

Paediatric gynaecology Gynaecology and obstetrics Reproduction medicine

Article was published in

Czech Gynaecology

Issue 5

2021 Issue 5

Most read in this issue
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.


Don‘t have an account?  Create new account