Current data on the efficacy of prophylactic HPV vaccination in the primary prevention of cervical lesions


Authors: B. Sehnal 1,2 ;  D. Driák 2 ;  M. Nipčová Džubáková 1 ;  J. Sláma 3
Authors‘ workplace: Onkogynekologické centrum, Gynekologicko-porodnická klinika 1. LF UK a FN Bulovka, Praha 1;  Gynekologicko-porodnické oddělení, Nemocnice Neratovice 2;  Onkogynekologické centrum, Gynekologicko-porodnická klinika 1. LF UK a VFN v Praze 3
Published in: Ceska Gynekol 2022; 87(2): 124-130
Category: Review Article
doi: 10.48095/cccg2022124

Overview

Objective: A review of current knowledge on the efficacy of HPV (human papillomavirus) HPV vaccination against pre-cancers and cervical cancer. Methods and results: HPV infection is probably the most common sexually transmitted disease and the cause of approximately 5% of all human cancers. Currently, three prophylactic vaccines against HPV infection are on the market: bivalent Cervarix, quadrivalent Gardasil (formerly Silgard) and nonavalent Gardasil9. The Czech Republic is one of the countries with a national vaccination program where HPV vaccination is covered by health insurance for girls and boys aged 13–14 years. Extensive scientific data on the efficacy of the vaccines clearly demonstrate significant efficacy against the development of cervical pre-cancers for all three vaccines. According to a high-certainty evidence of the Cochrane database, the efficacy of HPV vaccines against cervical intraepithelial neoplasia grade 2 or 3 associated with HPV 16, 18 compared with placebo in girls and women aged 15–26 is 99%. There is also moderate-certainty evidence that HPV vaccines reduce the risk of adenocarcinoma in situ for approximately 90% for the same population. Initial data also demonstrate a direct impact on reducing the incidence of invasive cervical cancer in vaccinated individuals. In addition, quadrivalent and nonavalent vaccines are highly effective in preventing genital warts. Conclusion: All three available prophylactic vaccines show high efficacy in preventing the development of cervical lesions. Efficacy is highest against lesions caused by vaccine genotypes and the highest efficacy is achieved in the HPV naive population.

Keywords:

HPV – vaccination – human papillomavirus – efficacy – HPV vaccine – cervical precancerous – cervical carcinoma


Sources

1. Zhou J, Sun XY, Stenzel DJ et al. Expression of vaccinia recombinant HPV 16 L1 and L2 ORF proteins in epithelial cell is sifficient for assembly of HPV virion-like particles. Virology 1991; 185 (1): 251–257. doi: 10.1016/0042-6822 (91) 90 772-4.

2. World Health Organization. Global HPV vaccine introduction overview: projected and current national introductions, demonstration/pilot projects, gender-neutral vaccination programs, and global HPV vaccine introduction maps (2006–2022). 2019 [online]. Available from: https: //path.azureedge.net/media/documents/GlobalHPVVaccineIntroOverview_Nov2019.pdf.

3. Mladěnka A, Sláma J. Vakcinace proti HPV a výhled nových možností. Ceska Gynekol 2018; 83 (3): 218–225.

4. Sbírka zákonů, ročník 2021, částka 164, ze dne 12. 10. 2021, Předpis č. 371/2021 Sb. – Novela zákona č. 48/1997 o veřejném zdravotním pojištění a o změně a doplnění ně­kte­rých souvisejících zákonů, ve znění pozdějších předpisů. 2021 [online]. Dostupné z: https: //aplikace.mvcr.cz/sbirka-zakonu.

5. Giuliano AR, Nyitray AG, Kreimer AR et al. EUROGIN 2014 roadmap: differences in human papillomavirus infection natural history, transmission and human papillomavirus-related cancer incidence by gender and anatomic site of infection. Int J Cancer 2015; 136 (12): 2752–2760. doi: 10.1002/ijc.29082.

6. Muñoz N, Bosch FX, de Sanjosé S et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 2003; 348 (6): 518–527. doi: 10.1056/NEJMoa021641.

7. Herweijer E, Sundström K, Ploner A et al. Quadrivalent HPV vaccine effectiveness against high-grade cervical lesions by age at vaccination: a population-based study. Int J Cancer 2016; 138 (12): 2867–2874. doi: 10.1002/ijc.30035.

8. Konno R, Konishi H, Sauvaget C et al. Effectiveness of HPV vaccination against high grade cervical lesions in Japan. Vaccine 2018; 36 (52): 7913–7915. doi: 10.1016/j.vaccine.2018.05.048.

9. Steben M, Tan Thompson M, Rodier C et al. A review of the impact and effectiveness of the quadrivalent human papillomavirus vaccine: 10 years of clinical experience in Canada. Obstet Gynaecol Can 2018; 40 (12): 1635–1645. doi: 10.1016/j.jogc.2018.05.024.

10. McClung NM, Gargano JW, Park IU et al. HPV-IMPACT working group. Estimated number of cases of high-grade cervical lesions dia­gnosed among women – United States, 2008 and 2016. MMWR Morb Mortal Wkly Rep 2019; 68 (15): 337–343. doi: 10.15585/mmwr.mm6815a1.

11. Oakley F, Desouki MM, Pemmaraju M et al. Trends in high-grade cervical cancer precursors in the human papillomavirus vaccine era. Am J Prev Med 2018; 55 (1): 19–25. doi: 10.1016/ j.amepre.2018.03.015.

12. Palmer T, Wallace L, Pollock KG et al. Prevalence of cervical disease at age 20 after immunisation with bivalent HPV vaccine at age 12–13 in Scotland: retrospective population study. BMJ 2019; 365: l1161. doi: 10.1136/bmj.l1161.

13. Giuliano AR, Joura EA, Garland SM et al. Nine-valent HPV vaccine efficacy against related diseases and definitive therapy: compa­rison with historic placebo population. Gynecol Oncol 2019; 154 (1): 110–117. doi: 10.1016/ j.ygyno.2019.03.253.

14. Tota JE, Struyf F, Hildesheim A et al. Costa Rica Vaccine Trial and PATRICIA study. Efficacy of the AS04-adjuvanted HPV16/18 vaccine: pooled analysis of the Costa Rica Vaccine and PATRICIA randomized controlled trials. J Natl Cancer Inst 2020; 112 (8): 818–828. doi: 10.1093/jnci/djz222.

15. Lehtinen M, Lagheden C, Luostarinen T et al. Ten-year follow-up of human papillomavirus vaccine efficacy against the most stringent cervical neoplasia end-point-registry-based follow-up of three cohorts from randomized trials. BMJ Open 2017; 7 (8): e015867. doi: 10.1136/bmjopen-2017-15867.

16. Drolet M, Bénard É, Pérez N et al. Population-level impact and herd effects following the introduction of human papillomavirus vaccination programmes: updated systematic review and meta-analysis. Lancet 2019; 394 (10197): 497–509. doi: 10.1016/S0140-6736 (19) 30298-3.

17. Arbyn M, Xu L, Simoens C et al. Prophylatic vaccination against human papilloma viruses to prevent cervical cancer and its precursors. Cochrane Database of Sys Rev 2018; 5 (5): CD009069. doi: 10.1002/14651858.CD009069.pub3.

18. Falcaro M, Castañon A, Ndlela B et al. The effects of the national HPV vaccination programme in England, UK, on cervical cancer and grade 3 cervical intraepithelial neoplasia incidence: a register-based observational study. Lancet 2021; 398 (10316): 2084–2092. doi: 10.1016/S0140-6736 (21) 02178-4.

19. Luostarinen T, Apter D, Dillner J et al. Vaccination protects against invasive HPV-associated cancers. Int J Cancer 2018; 142 (10): 2186–2187. doi: 10.1002/ijc.31231.

20. Lei J, Ploner A, Elfström KM et al. HPV vaccination and the risk of invasive cervical cancer. N Engl J Med. 2020; 383 (14): 1340–1348. doi: 10.1056/NEJMoa1917338.

21. Lei J, Ploner A, Lehtinen M et al. Impact of HPV vaccination on cervical screening performance: a population-based cohort study. Br J Cancer 2020; 123 (1): 155–160. doi: 10.1038/s41416-020-0850-6.

22. Sehnal B, Rozsypal H, Nipčová M et al. Pre­valence, incidence, perzistence a možnosti přenosu infekce lidským papilomavirem (HPV). Epidemiol Mikrobio­l Imunol 2017; 66 (4): 198–209.

23. De Vuyst H, Clifford GM, Nascimento MC et al. Prevalence and type distribution of human papillomavirus in carcinoma and intraepithelial neoplasia of the vulva, vagina and anus: a meta--analysis. Int J Cancer 2009; 124 (7): 1626–1636. doi: 10.1002/ijc.24116.

24. Chaitanya NC, Allam NS, Gandhi DB et al. Systematic meta-analysis on association of human papilloma virus and oral cancer. J Cancer Res Ther 2016; 12 (2): 969–974. doi: 10.4103/ 0973-1482.179098.

25. Cheng L, Wang Y, Du J. Human papillomavirus vaccines: an updated review. Vaccines (Basel) 2020; 8 (3): 391. doi: 10.3390/vaccines8030391.

26. Ali H, Donovan B, Wand H et al. Genital warts in young Australians five years into national human papillomavirus vaccination programme: national surveillance data. BMJ 2013; 346: f2032. doi: 10.1136/bmj.f2032.

27. Canvin M, Sinka K, Hughes G et al. Decline in genital warts dia­gnoses among young women and young men since the introduction of the bivalent HPV (16/18) vaccination programme in England: an ecological analysis. Sex Transm Infect 2017; 93 (2): 125–128. doi: 10.1136/sextrans-2016-052626.

28. Blomberg M, Dehlendorff C, Sand C et al. Dose-related differences in effectiveness of human papillomavirus vaccination against geni­tal warts: a nationwide study of 550,000 young girls. Clin Infect Dis 2015; 61 (5): 676–682. doi: 10.1093/cid/civ364.

29. Petráš M, Adámková V. Impact of quadrivalent human papillomavirus vaccine in women at increased risk of genital warts burden: population-based cross-sectional survey of Czech women aged 16 to 40 years. Vaccine 2015; 33 (46): 6264–6267. doi: 10.1016/ j.vaccine.2015.09.071.

30. Kyrgiou M, Athanasiou A, Kalliala IE et al. Obstetric outcomes after conservative treatment for cervical intraepithelial lesions and early invasive disease. Cochrane Database Syst Rev 2017; 11 (11): CD012847. doi: 10.1002/14651858.CD012847.

31. Cruickshank ME, Grigore M. Cervical cancers avoided by HPV immunisation. Lancet 2021; 398 (10316): 2053–2055. doi: 10.1016/S0140- 6736 (21) 02396-5.

32. Burger EA, Sy S, Nygård M et al. Prevention of HPV-related cancers in Norway: cost-effectiveness of expanding the HPV vaccination program to include pre-adolescent boys. PLoS One 2014; 9 (3): e89974. doi: 10.1371/journal.pone.0089974.

33. Craciun C, Baban A. “Who will take the blame?”: understanding the reasons why Romanian mothers decline HPV vaccination for their daughters. Vaccine 2012; 30 (48): 6789–6793. doi: 10.1016/j.vaccine.2012.09.016.

34. Zhou X, Sun L, Yao X et al. Progress in vaccination of prophylactic human papillomavirus vaccine. Front Immunol 2020; 11: 1434. doi: 10.3389/fimmu.2020.01434.

35. Tota JE, Chevarie-Davis M, Richardson LA et al. Epidemiology and burden of HPV infection and related diseases: implications for prevention strategies. Prev Med 2011; 53 (Suppl 1): S12–S21. doi: 10.1016/j.ypmed.2011.08. 017.

36. ACOG (American College of Obstetricians and Gynecologists). Human Papillomavirus Vaccination: ACOG Committee Opinion Summary, Number 809. Obstet Gynecol 2020; 136 (2): e15–e21. doi: 10.1097/AOG.00000000000004000.

37. Simms KT, Hanley SJ, Smith MA et al. Impact of HPV vaccine hesitancy on cervical cancer in Japan: a modelling study. Lancet Public Health 2020; 5 (4): e223–e234. doi: 10.1016/S2468-2667 (20) 30010-4.

38. Tachezy R. Ústní sdělení. HPV vakcinace – od experimentů k dnešní realitě – pohled virologa. 13. konference Sekce kolposkopie a cervikální patologie ČGPS ČLS JEP, Orea Hotel Pyramida, Praha, 3.–5. 12. 2021.

39. Svod. Český národní webový portál epidemiologie nádorů. Systém pro vizualizaci onkologických dat. Institut bio­statistiky a analyz Lekařske a Přirodovědecke fakulty Masarykovy univerzity (IBA MU). 2021 [online]. Dostupné z: http: //www.svod.cz.

40. Verdoodt F, Dehlendorff C, Kjaer SK. Dose-related effectiveness of quadrivalent human pa­pillomavirus vaccine against cervical intraepithelial neoplasia: a Danish nationwide cohort study. Clin Infect Dis 2020; 70 (4): 608–614. doi: 10.1093/cid/ciz239.

Labels
Paediatric gynaecology Gynaecology and obstetrics Reproduction medicine

Article was published in

Czech Gynaecology

Issue 2

2022 Issue 2

Most read in this issue
Login
Forgotten password

Don‘t have an account?  Create new account

Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account