Trofoblastové kmeňové bunky, invázia trofoblastu a organoidy – pokroky v gynekológii
Autoři:
Petra Gašparová 1
; Zuzana Ballová 1
; D. Bačenková 2
; M. Trebuňová 2
; Erik Dosedla 1
Působiště autorů:
Department of Gynaecology and Obstetrics, Faculty of Medicine, University P. J. Safarik in Košice, Hospital AGEL Košice-Šaca Inc., Slovak Republic
1; Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Košice, Slovak Republic
2
Vyšlo v časopise:
Ceska Gynekol 2024; 89(2): 151-155
Kategorie:
Přehledová práce
doi:
https://doi.org/10.48095/cccg2024151
Souhrn
Súhrn: Ľudská placenta predstavuje životne dôležitú bariéru medzi matkou a vyvíjajúcim sa plodom počas tehotenstva. Porucha včasného vývoja placenty je spojená so závažnými poruchami tehotenstva. Napriek jej komplexnému vývoju stále nie sú úplne objasnené rôzne molekulárne procesy riadiace vývoj placenty a špecializáciu buniek trofoblastu. Jednou z hlavných prekážok je nedostatok vhodných bunkových modelových systémov. Tradičné dvojrozmerné (2D) bunkové kultúry nedokážu imitovať podmienky in vivo a nezachytávajú zložité medzibunkové interakcie nevyhnutné na štúdium vývoja placenty. Avšak trojrozmerné (3D) modely organoidov, odvodené z kmeňových buniek, ktoré replikujú prirodzenú organizáciu a architektúru buniek výrazne zlepšili naše chápanie správania sa trofoblastov a ich medicínskych aplikácií. Organoidy s relevantnými fenotypmi poskytujú cennú platformu na modelovanie fyziológie a patológie placenty, vrátane modelovania porúch placenty. Sú veľkým prísľubom pre personalizovanú medicínu, zlepšenie diagnostiky a hodnotenia účinnosti a bezpečnosti farmaceutických liečiv. Tento článok poskytuje stručný prehľad trofoblastových kmeňových buniek, invázie trofoblastu a rozvíjajúcej sa úlohy organoidov v gynekológii.
Klíčová slova:
organoidy – trofoblastové kmeňové bunky – invázia trofoblastu – komplikácie tehotenstva
Zdroje
1. Bačenková D, Trebuňová M, Čížková D et al. In vitro model of human trophoblast in early placentation. Biomedicines 2022; 10 (4): 904. doi: 10.3390/biomedicines10040904.
2. Knöfler M, Haider S, Saleh L et al. Human placenta and trophoblast development: key molecular mechanisms and model systems. Review Cell Mol Life Sci 2019; 76 (18): 3479–3496. doi: 10.1007/s00018-019-03104-6.
3. Augustyniak J, Bertero A, Coccini T et al. Organoids are promising tools for species-specific in vitro toxicological studies. J Appl Toxicol 2019; 39 (12): 1610–1622. doi: 10.1002/jat.3815.
4. Kolios G, Moodley Y. Introduction to stem cells and regenerative medicine. Respiration 2013; 85 (1): 3–10. doi: 10.1159/000345615.
5. Zhao Z, Chen X, Dowbaj AM et al. Organoids. Nat Rev Methods Primers 2022; 2: 94. doi: 10.1038/s43586-022-00174-y.
6. Douglas GC, VandeVoort CA, Kumar P et al. Trophoblast stem cells: models for investigating trophectoderm differentiation and placental development. Endocr Rev 2009; 30 (3): 228–240. doi: 10.1210/er.2009-0001.
7. Lawless L, Qin Y, Xie L et al. Trophoblast differentiation: mechanisms and implications for pregnancy complications. Nutrients 2023; 15 (16): 3564. doi: 10.3390/nu15163564.
8. Dong C, Beltcheva M, Gontarz P et al. Derivation of trophoblast stem cells from naïve human pluripotent stem cells. Elife 2020; 9: e52504. doi: 10.7554/eLife.52504.
9. Liu X, Ouyang JF, Rossello FJ et al. Reprogramming roadmap reveals route to human induced trophoblast stem cells. Nature 2020; 586 (7827): 101–107. doi: 10.1038/s41586-020-2734-6.
10. Karvas RM, Khan SA, Verma S et al. Stem-cell--derived trophoblast organoids model human placental development and susceptibility to emerging pathogens. Cell Stem Cell 2022; 29 (5): 810.e8–825.e8. doi: 10.1016/j.stem.2022.04.004.
11. Sheridan MA, Fernando RC, Gardner L et al. Establishment and differentiation of long-term trophoblast organoid cultures from the human placenta. Nat Protoc 2020; 15 (10): 3441–3463. doi: 10.1038/s41596-020-0381-x.
12. Cindrova-Davies T, Sferruzzi-Perri AN. Human placental development and function. Semin Cell Dev Biol 2022; 131: 66–77. doi: 10.1016/j.semcdb.2022.03.039.
13. Zhuang BM, Cao DD, Liu XF et al. Application of a JEG-3 organoid model to study HLA-G function in the trophoblast. Front Immunol 2023; 14: 1130308. doi: 10.3389/fimmu.2023.1130308.
14. Io S, Kondoh E, Chigusa Y et al. New era of trophoblast research: integrating morphological and molecular approaches. Hum Reprod Update 2020; 26 (5): 611–633. doi: 10.1093/humupd/ dmaa020.
15. Okae H, Toh H, Sato T et al. Derivation of human trophoblast stem cells. Cell Stem Cell 2018; 22 (1): 50.e6–63.e6. doi: 10.1016/j.stem.2017.11.004.
16. Zhu JY, Pang ZJ, Yu YH. Regulation of trophoblast invasion: the role of matrix metalloproteinases. Rev Obstet Gynecol 2012; 5 (3–4): e137–e143.
17. Knöfler M, Pollheimer J. IFPA Award in Placentology lecture: molecular regulation of human trophoblast invasion. Placenta 2012; 33 Suppl (2): S55–S62. doi: 10.1016/j.placenta.2011.09.019.
18. Heidari-Khoei H, Esfandiari F, Hajari MA et al. Organoid technology in female reproductive biomedicine. Reprod Biol Endocrinol 2020; 18 (1): 64. doi: 10.1186/s12958-020-00621-z.
19. Morey R, Bui T, Fisch KM et al. Modeling placental development and disease using human pluripotent stem cells. Placenta 2023; 141: 18–25. doi: 10.1016/j.placenta.2022.10.011.
20. Rossi G, Manfrin A, Lutolf MP. Progress and potential in organoid research. Nat Rev Genet 2018; 19 (11): 671–687. doi: 10.1038/s41576- 018-0051-9.
21. Corrò C, Novellasdemunt L, Li VS. A brief history of organoids. Am J Physiol Cell Physiol 2020; 319 (1): C151–C165. doi: 10.1152/ajpcell.001 20.2020.
22. Han Y, Yang L, Lacko LA et al. Human organoid models to study SARS-CoV-2 infection. Nat Methods 2022; 19 (4): 418–428. doi: 10.1038/s41592-022-01453-y.
23. Wei Y, Zhang C, Fan G et al. Organoids as novel models for embryo implantation study. Reprod Sci 2021; 28 (6): 1637–1643. doi: 10.1007/s43032-021-00501-w.
24. Almeqdadi M, Mana MD, Roper J et al. Gut organoids: mini-tissues in culture to study intestinal physiology and disease. Am J Physiol Cell Physiol 2019; 317 (3): C405–C419. doi: 10.1152/ajpcell.00300.2017.
25. Nikonorova VG, Chrishtop VV, Mironov VA et al. Advantages and potential benefits of using organoids in nanotoxicology. Cells 2023; 12 (4): 610. doi: 10.3390/cells12040610.
26. Wechsler ME, Shevchuk M, Peppas NA. Developing a multidisciplinary approach for engineering stem cell organoids. Ann Biomed Eng 2020; 48 (7): 1895–1904. doi: 10.1007/s104 39-019-02391-1.
27. Lehmann R, Lee CM, Shugart EC et al. Human organoids: a new dimension in cell biology. Mol Biol Cell 2019; 30 (10): 1129–1137. doi: 10.1091/mbc.E19-03-0135.
28. de Jongh D, Massey EK, Bunnik EM. VANGUARD consortium. Organoids: a systematic review of ethical issues. Stem Cell Res Ther 2022; 13 (1): 337. doi: 10.1186/s13287-022-02950-9.
29. Alzamil L, Nikolakopoulou K, Turco MY. Organoid systems to study the human female reproductive tract and pregnancy. Cell Death Differ 2021; 28 (1): 35–51. doi: 10.1038/s414 18-020-0565-5.
30. Turco MY, Gardner L, Kay RG et al. Trophoblast organoids as a model for maternal-fetal interactions during human placentation. Nature 2018; 564 (7735): 263–267. doi: 10.1038/s41586-018-0753-3.
31. Heremans R, Jan Z, Timmerman D et al. Organoids of the female reproductive tract: innovative tools to study desired to unwelcome processes. Front Cell Dev Biol 2021; 9: 661472. doi: 10.3389/fcell.2021.661472.
32. Silva-Pedrosa R, Salgado AJ, Ferreira PE. Revolutionizing disease modeling: the emergence of organoids in cellular systems. Cells 2023; 12 (6): 930. doi: 10.3390/cells12060930.
33. Cui K, Chen T, Zhu Y et al. Engineering placenta-like organoids containing endogenous vascular cells from human-induced pluripotent stem cells. Bioeng Transl Med 2022; 8 (1): e10390. doi: 10.1002/btm2.10390.
34. Cui Y, Zhao H, Wu S et al. Human female reproductive system organoids: applications in developmental biology, disease modelling, and drug discovery. Stem Cell Rev Rep 2020; 16 (6): 1173–1184. doi: 10.1007/s12015-020-10039-0.
35. Chumduri C, Turco MY. Organoids of the female reproductive tract. J Mol Med (Berl) 2021; 99 (4): 531–553. doi: 10.1007/s00109-020-02 028-0.
ORCID authors
P. Gašparová 0000-0002-6354-6911
Z. Ballová 0000-0002-0605-948X
D. Bačenková 0000-0001-8459-849X
M. Trebuňová 0000-0001-5826-9692
E. Dosedla 0000-0001-8319-9008
Štítky
Dětská gynekologie Gynekologie a porodnictví Reprodukční medicínaČlánek vyšel v časopise
Česká gynekologie
2024 Číslo 2
Nejčtenější v tomto čísle
- Nový staging karcinomu endometria – FIGO 2023
- Trofoblastové kmeňové bunky, invázia trofoblastu a organoidy – pokroky v gynekológii
- Využití nitroděložního systému s levonorgestrelem v perimenopauze
- Hemoragická cievna mozgová príhoda v gravidite